Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Protostellar outflows exhibit large variations in their structure depending on the observed gas emission. To understand the origin of the observed variations, it is important to analyze the differences in the observed morphology and kinematics of the different tracers. TheJames WebbSpace Telescope (JWST) allows us to study the physical structure of the protostellar outflow through well-known near-infrared shock tracers in a manner unrivaled by other existing ground-based and space-based telescopes at these wavelengths. Aims. This study analyzes the atomic jet and molecular outflow in the Class I protostar, TMC1A, utilizing spatially resolved [Fe II] and H2lines to characterize the morphology and to identify previously undetected spatial features, and compare them to existing observations of TMC1A and its outflows observed at other wavelengths. Methods. We identified a large number of [Fe II] and H2lines within the G140H, G235H, and G395H gratings of the NIRSpec IFU observations. We analyzed their morphology and position-velocity (PV) diagrams. From the observed [Fe II] line ratios, the extinction toward the jet is estimated. Results. We detected the bipolar Fe jet by revealing, for the first time, the presence of a redshifted atomic jet. Similarly, the red-shifted component of the H2slower wide-angle outflow was observed. The [Fe II] and H2redhifted emission both exhibit significantly lower flux densities compared to their blueshifted counterparts. Additionally, we report the detection of a collimated high-velocity (~100 km s−1), blueshifted H2outflow, suggesting the presence of a molecular jet in addition to the well-known wider angle low-velocity structure. The [Fe II] and H2jets show multiple intensity peaks along the jet axis, which may be associated with ongoing or recent outburst events. In addition to the variation in their intensities, the H2wide-angle outflow exhibits a ring-like structure. The blueshifted H2outflow also shows a left-right brightness asymmetry likely due to interactions with the surrounding ambient medium and molecular outflows. Using the [Fe II] line ratios, the extinction along the atomic jet is estimated to be betweenAV= 10–30 on the blueshifted side, with a trend of decreasing extinction with distance from the protostar. A similarAVis found for the redshifted side, supporting the argument for an intrinsic red-blue outflow lobe asymmetry rather than environmental effects such as extinction. This intrinsic difference revealed by the unprecedented sensitivity of JWST, suggests that younger outflows already exhibit the red-blue side asymmetry more commonly observed toward jets associated with Class II disks.more » « less
-
Context.Complex organic molecules (COMs) have been detected ubiquitously in protostellar systems. However, at shorter wavelengths (~0.8 mm), it is generally more difficult to detect larger molecules than at longer wavelengths (~3 mm) because of the increase in millimeter dust opacity, line confusion, and unfavorable partition function. Aims.We aim to search for large molecules (more than eight atoms) in the Atacama Large Millimeter/submillimeter Array (ALMA) Band 3 spectrum of IRAS 16293-2422 B. In particular, the goal is to quantify the usability of ALMA Band 3 for molecular line surveys in comparison to similar studies at shorter wavelengths. Methods.We used deep ALMA Band 3 observations of IRAS 16293-2422 B to search for more than 70 molecules and identified as many lines as possible in the spectrum. The spectral settings were set to specifically target three-carbon species such as i- and n-propanol and glycerol, the next step after glycolaldehyde and ethylene glycol in the hydrogenation of CO. We then derived the column densities and excitation temperatures of the detected species and compared the ratios with respect to methanol between Band 3 (~3 mm) and Band 7 (~1 mm, Protostellar Interferometric Line Survey) observations of this source to examine the effect of the dust optical depth. Results.We identified lines of 31 molecules including many oxygen-bearing COMs such as CH3OH, CH2OHCHO, CH3CH2OH, and c-C2H4O and a few nitrogen- and sulfur-bearing ones such as HOCH2CN and CH3SH. The largest detected molecules are gGg-(CH2OH)2and CH3COCH3. We did not detect glycerol or i- and n-propanol, but we do provide upper limits for them which are in line with previous laboratory and observational studies. The line density in Band 3 is only ~2.5 times lower in frequency space than in Band 7. From the detected lines in Band 3 at a ≳ 6σ level, ~25–30% of them could not be identified indicating the need for more laboratory data of rotational spectra. We find similar column densities and column density ratios of COMs (within a factor ~2) between Band 3 and Band 7. Conclusions.The effect of the dust optical depth for IRAS 16293-2422 B at an off-source location on column densities and column density ratios is minimal. Moreover, for warm protostars, long wavelength spectra (~3 mm) are not only crowded and complex, but they also take significantly longer integration times than shorter wavelength observations (~0.8 mm) to reach the same sensitivity limit. The 3 mm search has not yet resulted in the detection of larger and more complex molecules in warm sources. A full deep ALMA Band 2–3 (i.e., ~3–4 mm wavelengths) survey is needed to assess whether low frequency data have the potential to reveal more complex molecules in warm sources.more » « less
-
Abstract Outflows and winds launched from young stars play a crucial role in the evolution of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenomena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec integral field unit observations of atomic and H2lines from 1 to 5.1μm toward the low-mass protostar TMC1A. For the first time, a collimated atomic jet is detected from TMC1A in the [Feii] line at 1.644μm along with corresponding extended H22.12μm emission. Toward the protostar, we detected spectrally broad Hiand Heiemissions with velocities up to 300 km s−1that can be explained by a combination of protostellar accretion and a wide-angle wind. The 2μm continuum dust emission, Hi, Hei, and Oiall show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars; in this case, a previously undetected atomic wind and ionized jet in a well-known outflow.more » « less
-
null (Ed.)Context. Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. Recent studies allude to an early start to planet formation already during the formation of a disk. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. Aims. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. Methods. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, HCO + , HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in local thermodynamical equilibrium (LTE) as well as through more detailed non-LTE radiative transfer calculations. Results. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO + , HCN, and SO are also detected from the inner 100 au region. We further report on upper limits to vibrational HCN υ 2 = 1, DCN, and N 2 D + lines. The HCO + emission appears to trace both the Keplerian disk and the surrounding infalling rotating envelope. HCN emission peaks toward the outflow cavity region connected with the CO disk wind and toward the red-shifted part of the Keplerian disk. From the derived HCO + abundance, we estimate the ionization fraction of the disk surface, and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk’s molecular abundances relative to Solar System objects. Conclusions. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and H 2 O molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.more » « less
An official website of the United States government
